J. Entomol. Res. Soc., 27(1): 175-188, 2025 Doi: 10.51963/jers.v27i1.2787

A Novel Host Association of *Telenomus remus* Nixon, 1937 (Hymenoptera: Scelionidae), Evidenced by Molecular Studies

Jayanand ABITHA^{1a,3} Keloth RAJMOHANA^{1b*} Rupam DEBNATH^{1c,3}

A. SHABNAM^{2a} K. P. DINESH^{2b}

¹Zoological Survey of India, 'M' Block, New Alipore, Kolkata -700053, West Bengal, INDIA
²Zoological Survey of India, Western Regional Centre, Akurdi, Pune- 411044, Maharashtra, INDIA
³Department of Zoology, University of Calcutta, Kolkata-700019, West Bengal, INDIA
e-mails: ^{1a}abithap39@gmail.com, ^{1b}mohana.skumar@gmail.com^{-1c}rupam.zoology@gmail.com, ^{2a}shabnamansari9113@gmail.com, ^{2b}kpdinesh.zsi2@gmail.com
ORCID IDs: ^{1a}0000-0002-0003-859X, ^{1b}0000-0001-9419-6582, ^{1c}0000-0002-9034-6712, ^{2a}0000-0002-9307-3625, ^{2b}0000-0002-6700-4896

*Corresponding author

ABSTRACT

The present study from Indian Sundarbans, reports a new host-parasitoid association of *Spodoptera pecten* Guenée (Lepidoptera) and *Telenomus remus* Nixon (Hymenoptera). *T. remus* was identified integrating both morphological and molecular studies, while identification of *S. pecten* was based on molecular data (mt COI) obtained from reared larvae. The study confirms the natural occurrence of *T. remus* populations in Indian Sundarbans, with *S. pecten* as their host. Maximum likelihood trees based on the mt COI DNA gene sequences were generated for *T. remus*, and *S. pecten* to confirm the conspecificity. Further, the work also reports *Musa* sp. as a new host plant of *S. pecten*.

Keywords: host-parasitoid, India, new records, mt COI, Spodoptera pecten.

Abitha, J., Rajmohana, K., Debnath, R., Shabnam, A., & Dinesh, K. P. (2025). A novel host association of *Telenomus remus* Nixon, 1937 (Hymenoptera: Scelionidae), evidenced by molecular studies. *Journal* of the Entomological Research Society, 27(1), 175-188.

Received: November 29, 2024

Accepted: February 18, 2025

INTRODUCTION

Insect parasitoids play a crucial role in regulating the populations of their hosts, offering natural control over pest species (Taekul, Valerio, Austin, Klompen & Johnson, 2014). However, there is limited understanding of how parasitoids fit into broader species interaction networks (Miller, Polaszek & Evans, 2021). Scelionidae, a prominent family of parasitic Hymenoptera, is characterized by endoparasitism of insect or spider eggs (Austin, Johnson & Dowton, 2005). Within this family, the genus *Telenomus* Haliday is particularly notable, as its members are common egg parasitoids of various insect orders, including Lepidoptera, Hemiptera (suborders Heteroptera and Auchenorrhyncha), Neuroptera, and Diptera (Taekul et al., 2014).

Telenomus remus Nixon, 1937, a well-known egg parasitoid of Lepidoptera (Cave, 2000; Pomari, Bueno, Freitas Bueno, Menezes Junior, 2012), was released as a biocontrol agent against several pest species of *Spodoptera* Guenée (Noctuidae) globally (Pomari et al., 2012). This parasitoid target at least 10 *Spodoptera* species (Table 1), many of which are serious agricultural pests causing significant economic damage (Cave, 2000; Colmenarez, Babendreier, Wurst, Freytez & Bueno, 2022). DNA barcoding proves to be a valuable tool for determining host-parasitoid relationships and for constructing ecological networks efficiently and cost-effectively (Gariepy, Haye & Zhang, 2014; Miller, Polaszek & Evans, 2021; Wengrat et al., 2021). This is particularly useful in groups like Lepidoptera, where morphological identification is often restricted to specific life stages or sexes.

The present study aimed to investigate parasitoid associations with lepidopteran eggs in the Indian Sundarbans. The results revealed *T. remus* utilizing *Spodoptera pecten* (Guenée) as a host, a relationship that was previously unknown. Furthermore, *S. pecten* was found to use *Musa* sp. (banana plants) as its larval host, which had not been documented before. Table 1. List of *Spodoptera* species parasitised by *T. remus*

Species	References
S. albula (Walker)	Cave 2000; Pomari et al. 2012
S. cosmioides (Walker)	Pomari et al. 2012
S. dolichos (Fabricius)	Cave 2000; Wojcik et al. 1976
S. eridania (Stoll)	Cave 2000; Pomari et al. 2012; Wojcik et al. 1976
S. exigua (Hübner)	Cave 2000; Wojcik et al. 1976
S. frugiperda (Smith)	Cave 2000; Kenis et al. 2019; Liao et al. 2019; Pomari et al. 2012; Wojcik et al. 1976
S. latifascia (Walker)	Cave 2000; Wojcik et al. 1976
S. littoralis (Boisduval)	Cave 2000; Gerling 1972
S. litura (Fabricius)	Cave 2000
S. mauritia (Boisduval)	Cave 2000; Gautam 1987

METHODS

Field sampling and rearing

Exploratory surveys were conducted in Indian Sundarbans, to study host-parasitoid associations. Egg masses of Lepidoptera were collected from natural and agricultural landscapes and were reared in glass vials with their mouth covered by muslin cloth. The vials were monitored daily for the emergence of parasitoids and host larvae, and the emerged specimens were preserved in 90% alcohol.

Species identification

The morphological identification of *T. remus* followed Nixon (1937) and Chou (1987) whereas the male genitalia slide was prepared after Polaszek and Kimani (1990). Molecular identification employed DNA barcoding for mitochondrial cytochrome c oxidase I COI (mt COI) gene. Genomic DNA was extracted from parasitoid specimens using the DNeasy Blood and Tissue Kit (QIAGEN, Inc.), following the kit protocol. DNA quantitation was performed in Qubit 2.0 fluorometer followed by polymerase chain reaction (PCR) amplification using primers LCO1490 and HCO2198 (Folmer, Black, Hoch, Lutz & Vrijenoek, 1994). The PCR was carried out following Rajmohana et al. (2024) in a total volume of 25µL containing 12.5µL of 2X hot start master mix (Promega), 10µM of each forward and reverse primers, 30-40ng of template DNA and nuclease-free water up to final volume. Thermal cycling profile was as per Gariepy et al. (2014). Positive PCRs were confirmed on agarose gel by electrophoresis, followed by PCR purification. Purified products were bidirectionally sequenced by Sanger's dideoxy method on ABI 377 (Applied Biosciences) sequencer. The mt COI barcodes of the lepidopteran larvae, from cases III, IV, and V (Table 2), were generated by following the same procedure as mentioned above.

All the obtained chromatogram files were manually assessed for quality and the sequences were subjected to National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) to confirm the genetic identity. The voucher specimens of both the parasitoids and host larvae were deposited in the National Zoological Collections at the Zoological Survey of India (ZSI), Kolkata.

Digital imaging

Photomicrographs of the parasitoids were taken using a Leica DFC 500 digital camera attached to Leica M205A stereomicroscope (1X objective), and processed with LAS version 3.6 extended focus software. Images of the male genitalia slides were procured using Leica DM 1000 digital upright microscope.

Parasitism rate

The parasitism rate was calculated as per Sari, Buchori & Nurkomar (2021), using the formula $PR=(n/N) \times 100 \%$. Where, PR= parasitism rate; n =number of parasitised eggs; N = number of total eggs.

Phylogenetic analysis

For phylogenetic analyses of *Telenomus* species, the generated sequences were aligned with the mt COI dataset of Polaszek et al. (2021) (excluding *Trissolcus thyantae* Ashmead and *Hadronotus cultratus* (Masner)) in MEGAX (Kumar, Stecher, Li, Knyaz & Tamura, 2018). Additionally, mt COI sequences of *T. gregalis* Rajmohana (Rajmohana et al. 2024), *T. dendrolimi* (Matsumura) (Chen et al. 2024) and *T. dilophonotae* Cameron (Wengrat et al. 2024) were incorporated and aligned. A final maximum likelihood tree was built using 66 sequences (Table A1) in IQ-TREE multicore version 1.6.12 (Trifinopoulos, Nguyen, von Haeseler & Minh, 2016) web server. A total of 1000 ultrafast bootstrap replicates were performed under the GTR+F+I+G4 substitution model, which

was automatically selected based on the Bayesian Information Criterion with default parameters. The consensus tree was visualised in FigTree v 1.4 to treat *Trissolcus basalis* (Walloston) as outgroup (Chen et al. 2024).

For phylogenetic analyses of *Spodoptera* species, a total of 2029 sequences were downloaded from GenBank belonging to the Noctuidae family. These sequences were aligned with sequences generated in the present study in MEGA X (Kumar et al., 2018). All the sequences which didn't align and created gaps were removed from the alignment. Many sequences that were too divergent were not included in the analyses (example, a few sequences of Kergoat et al., 2021). An initial tree was built with ~ 1000 mt COI sequences to check the monophyly of the *Spodoptera* spp. From the monophyletic sequences, only one sequence per species was used in the final tree construct, while the outgroup and member of other genera under Noctuidae were taken from Kergoat et al., (2021). A final Maximum likelihood tree was built using 56 sequences (Table A2) including 28 species of *Spodoptera* in IQ-TREE multicore version 1.6.12 (Trifinopoulos et al., 2016) web server for 1000 ultrafast bootstraps under GTR+F+I+G4 substitution model auto selected according to Bayesian Information Criterion with default parameters. The consensus tree was visualised in FigTree v 1.4 treating members of the genus *Catocala* Schrank as outgroup (Kergoat et al., 2021).

RESULTS

The emergence of both parasitoids and host larvae from the collected egg masses (Fig. 1a), was documented (Table 2). In cases I, II, and III, the parasitoids were observed emerging from a single egg mass over 2-12 days of rearing, suggesting that, the parasitism did not occur in a single stretch. The rate of parasitism was highest for case I (77.03%) and lowest for III (21.78%). A few host larvae also emerged in cases III, IV, and V.

The egg parasitoids were identified as *T. remus* (Fig. 1b-c) through an integrative taxonomic approach, utilizing both the morphological characters including male genitalia (Fig. 1d) and the DNA barcoding. The specimens from all four sites exhibited no morphological differences and matched the description of *T. remus* provided by Nixon (1937) and Chou (1987). Similarly, the male genitalia showed no significant variations and aligned with the description provided by Wengrat et al. (2021).

Case	Date of collection of egg masses	Area surveyed	Geographical coordinates	Egg parasitoid identity	Host identity	Host plant	Parasitoid emergence	₽:3	Parasitism rate (%)
I	27-02-2021	Madhya Gurguria, Kultali, SBR	21.97694 N 88.56722 E	T. remus	Unidentified (no larva emerged)	Unidentified	2nd, 3rd and 8th day of rearing	7:6	77.03
Ш	21-11-2021	Raidighi, Mathurapur II, SBR	21.99366 N 88.43861 E	T. remus	Unidentified (no larva emerged)	Unidentified	4th and 5th day of rearing	14:5	44.78
111	04-04-2022	Maipit, Kultali, SBR	21.91888 N 88.53583 E	T. remus	S. pecten (Identified from emerged larva)	Unidentified	7th and 9th day of rearing	5:12	21.78
IV	05-04-2022	Jamtala, Kultali, SBR	22.10888 N 88.56805 E	T. remus	S. pecten (Identified from emerged larva)	Banana (<i>Musa</i> sp.)	12th day of rearing	10:13	36.70
v	04-04-2022	Maipit, Kultali, SBR	21.91888 N 88.53583 E	-	S. pecten (Identified from emerged larva)	Unidentified	No emergence	_	_

Table 2. Host- parasitoid emergence data.

Figure 1. a) egg mass of *Spodoptera pecten*; b) *Telenomus remus* female; c) *T. remus* male; d) *T. remus* male genitalia.

The four sequences of *T. remus* (accession numbers: PP524920, PP481554, PP475445, PP537412) generated from four samples, proved identical. The NCBI BLAST results of these sequences indicated a genetic identity ranging from 99.6% to 100% with *T. remus*. The mitochondrial COI-based single-gene ML tree (Fig. 2) for species of *Telenomus* demonstrated that the samples collected from the four sites clustered together with other *T. remus* sequences from Kenya, China and Egypt under a single clade (Fig. 2).

Figure 2. Maximum likelihood tree for the species of *Telenomus* based on 851 bp of mt COI DNA gene sequence. Green highlight indicates *T. remus* clade.

A total of six sequences of the lepidopteran larvae generated in this work, were analysed and compared using NCBI BLAST to verify their genetic identity. The results indicated a genetic identity ranging from 99.6 to 100% with *S. pecten* (accession numbers: PP078731, PP079035, PV037624, PV039679, PV053503, PV055052). The mitochondrial COI-based single-gene ML tree (Fig. 3) for the species of *Spodoptera* was prepared to confirm the monophyly of sequences on the tree to ascertain the BLAST identification. In the phylogenetic tree presented, all the species of *Spodoptera* showed a single monophyletic clade with poor bootstrap support among most of the subclades of *Spodoptera*. But, among the sister species pairs, bootstrap support was robust for most, however, with a few exceptions. Understanding the limitations of the mt COI gene for such phylogenetic inferences, we warrant further multigene species trees.

Figure 3. Maximum likelihood tree for the species of Spodoptera based on 603 bp of mt COI DNA gene sequence.

Sequences from the earlier studies of *S. pecten* from Pakistan (KX860418) by Ashfaq, Akhtar, Rafi, Mansoor & Hebert, 2017 and from Papua New Guinea (GU695454) by Watson et al., (unpublished data) formed a monophyletic clade with our samples of *S. pecten* sequences from West Bengal showing 0.2 % to 0.4% genetic distance within the populations of India, Pakistan and Papua New Guinea. This forms the first DNA barcode report for the species from India (although there is a report of

S. pecten sequence (MZ895792) from India by Kumar, Sharma, Paunikar & Sharma (2022) the sequence MZ895792 is not available for verification).

DISCUSSION

In addition to reporting the new host association of S. pecten and T. remus, the present study also finds Musa sp. as a new larval host plant of S. pecten (Table 2). The larvae of S. pecten usually feed on grasses and Shorea curtisii Dver ex King (Dipterocarpaceae) seeds (Kimura 1980 & Nagoshi, Brambila & Meagher, 2011). Biological data on S. pecten, a minor pest in Asia (Ellis, 2004) is extremely scanty. Associations of such hosts and parasitoids are poorly understood. Non-target host species may indirectly affect the effectiveness of parasitoids as biological control agents (Miller et al., 2021). Cronin (2007) demonstrated that two hosts can influence each other's populations through shared parasitoids. The presence of alternate or non-target host species and their susceptibility to parasitism can impact pest population dynamics, hence evaluation of non-target host range turns important. The conservation biological control strategies also consider alternative hosts as a reservoir to conserve potential parasitoids (Abram, Brodeur, Urbaneja & Tena, 2019). Several host species have proven effective for the mass rearing of T. remus in the laboratory. T. remus has been reported to attack 27 species belonging to family Noctuidae, two species of Pyralidae, one species of each under Arctiidae (Cave, 2000) and Crambidae (kiruthika, Jevarani, Murugan, Nakkeera, & Balasubramai, 2022) highlighting its generalistic nature. Greater host diversity increases the chances of survival of the parasitoids in the field. New host-parasitoid association records as in the present work, gain relevance in these contexts. The recovery of *T. remus* from four different localities in Sundarbans, is indicative of the natural occurrence of well-established extant populations (Table 2). S. pecten as a host aid in natural survival of T. remus.

In the phylogenetic tree for the species of *Telenomus* (Fig. 2), MW452546 (Unpublished data) from Egypt, assigned originally as a sequence of *T. remus*, is not clustered in the monophyletic clade here. This species from Egypt possibly being a misidentification, we prefer to treat it as *Telenomus* sp. On the preliminary phylogenetic tree (Fig. 3) for the species of *Spodoptera*, among the global 31 species, 28 are represented, including *S. pecten*.

In India, the taxonomic studies of moths utilizing DNA barcodes, are limited, though such studies help to prevent taxonomic inflation and enable the identification of morphologically variant species, also uncovering the cryptic diversity (Kalawate, Pawara, Shabnam & Dinesh, 2020). In the present study, the moth species was identified as *S. pecten* from the mt COI barcode of larval samples. Keeping this as a classical example of the utility of DNA barcodes in species identification, we call for the generation of more DNA barcodes for the lesser-known insect taxa from biodiversity-rich countries like India, to facilitate building a robust DNA barcode library for future studies.

CONCLUSIONS

Extensive studies on taxonomic and bioecological aspects of both the parasitoids and their hosts are indispensable in integrated pest management programs. Sustainable pest management strategies like biocontrol, need to be promoted in regions like Indian Sundarbans, where the ecosystem is fragile and the major livelihood source of the masses is agriculture.

ACKNOWLEDGMENTS

The authors are grateful to the Director, Zoological Survey of India for providing facilities to accomplish this work. KPD and AS would like to thank the Officer-in-Charge, ZSI, WRC, Pune for support and encouragement. JA is grateful to the Council of Scientific and Industrial Research for providing a Senior Research Fellowship (09/1181(0017)/2021-EMR-I). RK, KPD and RD are thankful to Department of Science and Technology and Science and Engineering Research Board (DST-SERB) (CRG/2021/005047) for providing facilities to carry out this work. The authors thank Dr. Navneet Singh, ZSI for literature support. JA and RD are thankful to all their lab mates for their wholehearted support.

REFERENCES

- Abram, P.K., Brodeur, J., Urbaneja, A., & Tena, A. (2019). Nonreproductive effects of insect parasitoids on their hosts. *Annual Review Entomology*, 64, 259 -276. https://doi.org/10.1146/annurev-ento-011118-111753.
- Agboyi, L.K., Goergen, G., Beseh, P., Mensah, S.A., Clottey, V.A., Glikpo, R., Buddie, A., Cafà, G., Offord, L., Day, R., Rwomushana, I., & Kenis, M. (2020). Parasitoid Complex of Fall Armyworm, *Spodoptera frugiperda*, in Ghana and Benin. *Insects*, 11(2), 68. https://doi.org/10.3390/insects11020068.
- Ashfaq, M., Akhtar, S., Rafi, M.A., Mansoor, S., & Hebert, P.D.N. (2017). Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan. *Plos One*, 12(3), e0174749. https://doi. org/10.1371/journal.pone.0174749.
- Austin, A.D., Johnson, N.F., & Dowton, M. (2005). Systematics, evolution, and biology of scelionid and platygastrid wasps. *Annual Review Entomology* 50, 553 -582. https://doi.org/10.1146/annurev. ento.50.071803.130500.
- Chen, H. Y., Talamas, E., Lahey, Z., Johnson, N. F., Lu, C. D., & Liang, G. H. (2024). *Telenomus dendrolimi* (Matsumura) (Hymenoptera, Scelionidae) reared from the eggs of *Dendrolimus houi* (Lajonquiere) (Lepidoptera, Lasiocampidae) from China. *Journal of Hymenoptera Research*, 97, 1385-1402.
- Chou, L.Y. (1987). Note on *Telenomus remus* (Hymenoptera: Scelionidae). *Bulletin of the Entomological* Society Natural Chung-Hsing University, 20,15 -20.
- Colmenarez, Y.C., Babendreier, D., Ferrer Wurst, F.R., Vásquez-Freytez, C.L., & de Freitas Bueno, A. (2022). The use of *Telenomus remus* (Nixon, 1937) (Hymenoptera: Scelionidae) in the management of *Spodoptera* spp.: potential, challenges and major benefits. *CABI Agriculture and Bioscience*, 3, 5. https://doi.org/10.1186/s43170-021-00071-6.
- Cronin, J.T. (2007). From population sources to sieves: the matrix alters host -parasitoid source-sink structure. *Ecology*, 88(12), 2966 -2976. https://doi.org/10.1890/07-0070.1.
- DeWaard, J.R., Ratnasingham, S., Zakharov, E.V., Borisenko, A.V., Steinke, D., Telfer, A.C., Perez, K.H., Sones, J.E., Young, M.R., Levesque-Beaudin, V., & Sobel, C.N. (2019). A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. *Scientific Data*, 6(1), 308. https://doi.org/10.1038/s41597-019-0320-2.

A Novel Host Association of Telenomus remus

- Djoumad, A., Nisole, A., Zahiri, R., Freschi, L., Picq, S., Gundersen-Rindal, D.E., Sparks, M.E., Dewar, K., Stewart, D., Maaroufi, H., & Levesque, R.C. (2017). Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, *Lymantria dispar*, reveals a previously undescribed genotypic entity. *Scientific Report*, 7(1), 1 -12. https://doi.org/10.1038/s41598-017-14530-6.
- Dumas, P., Barbut, J., Le Ru, B., Silvain, J.F., Clamens, A.L., d'Alençon, E., & Kergoat, G.J. (2015). Phylogenetic molecular species delimitations unravel potential new species in the pest genus *Spodoptera* Guenée, 1852 (Lepidoptera, Noctuidae). *PlosOne*, 10(4), p.e0122407.
- Ellis, S. E. (2004). New Pest Response Guidelines: *Spodoptera*. USDA/APHIS/PPQ/PDMP. http://www. aphis.usda.gov/ppq/manuals
- Folmer, O., Black, M., Hoch, W., Lutz, R., & Vrijenoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology*, 3, 294 -299.
- Gariepy, T.D., Haye, T., & Zhang, J. (2014). A molecular diagnostic tool for the preliminary assessment of host-parasitoid associations in biological control programmes for a new invasive pest. *Molecular Ecology*, 23(15), 3912 -3924. https://doi.org/10.1111/mec.12515.
- Gautam, R.D. (1987). Limitations in mass-multiplication of scelionid, *Telenomus remus* Nixon, a potential egg-parasitoid of *Spodoptera litura* (Fabricius). *Journal of Entomological Research*, 11(1), 6 -9.
- Gerling, D. (1972). The developmental biology of *Telenomus remus* Nixon (Hymenoptera: Scelionidae). *Bulletin of Entomological Research*, 61, 385 -488.
- Graham, R.I. & Wilson, K. (2012). Male-killing *Wolbachia* and mitochondrial selective sweep in a migratory African insect. *BMC Evolutionary Biology*, 12(1), 1 -11. https://doi.org/10.1186/1471-2148-12-204.
- Hebert, P.D., De-Waard, J.R., Zakharov, E.V., Prosser, S.W., Sones, J.E., McKeown, J.T., Mantle, B., & La Salle, J. (2013). A DNA 'Barcode Blitz': Rapid digitization and sequencing of a natural history collection. *Plos One*, 8(7), p.e68535. https://doi.org/10.1371/journal.pone.0068535.
- Kalawate, A.S., Pawara, S., Shabnam, A., & Dinesh, K.P. (2020). DNA barcode reveals the occurrence of Palearctic Olepa schleini Witt et al., 2005 (Lepidoptera: Erebidae: Arctiinae) from peninsular India with morphological variations and a new subspecies. *Journal of Threatened Taxa*, 12(9), 16143 -16152. https://doi.org/10.11609/jott.5596.12.9.16143-16152.
- Kenis, M., Du Plessis, H., Van den Berg, J., Ba, M.N., Goergen, G., Kwadjo, K.E., Baoua, I., Tefera, T., Buddie, A., Cafà, G., & Offord, L. (2019). *Telenomus remus*, a candidate parasitoid for the biological control of *Spodoptera frugiperda* in Africa, is already present on the continent. *Insects*, 10(4), 92. https://doi.org/10.3390/insects10040092.
- Kergoat, G.J., Goldstein, P.Z., Le Ru, B., Meagher, Jr, R. L., Zilli, A., Mitchell, A., Clamens, A.L., Gimenez, S., Barbut, J., Nègre, N., & d'Alençon, E. (2021). A novel reference dated phylogeny for the genus *Spodoptera* Guenée (Lepidoptera: Noctuidae: Noctuinae): new insights into the evolution of a pest-rich genus. *Molecular Phylogenetics and Evolution*, 161, 107161. https://doi.org/10.1016/j. ympev.2021.107161.
- Kergoat, G.J., Prowell, D.P., Le Ru, B.P., Mitchell, A., Dumas, P., Clamens, A.L., Condamine, F.L., & Silvain, J.F. (2012). Disentangling dispersal, vicariance and adaptive radiation patterns: a case study using armyworms in the pest genus *Spodoptera* (Lepidoptera: Noctuidae). *Molecular Phylogenetics* and Evolution, 65(3), 855 -870.
- Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution*, 16, 111 -120.
- Kiruthika, I., Jevarani, S., Murugan, M., Nakkeera, S., & Balasubramai, V. (2022). Assessment of parasitic potential of *Telenomus remus* Nixon against different lepidopteran pests. *The Pharma Innovation Journal*, 11(10s), 113-116.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution*, 35(6), 1547. https://doi. org/10.1093/molbev/msy096.

- Kumar, V.M.S., Sharma, G., Paunikar, S.D., & Sharma, S. (2022). Molecular Identification and First DNA Barcode Sequence Record of Spodoptera pecten Guenee, 1852 (Lepidoptera: Noctuidae) from Western Himalaya, India. Journal of Scientific Research, 28(1), 50 -53.
- Le, Ru, B., Barbut, J., Capdevielle-Dulac, C., Goftishu, M., & Kergoat, G.J. (2018). Re-establishment of Spodoptera teferii laporte in rougeot (lepidoptera: Noctuidae, noctuinae), with an updated molecular phylogeny for the genus Spodoptera Guenée. In: Annales de la Société entomologique de France (NS). Taylor & Francis.
- Liao, Y.L., Yang, B., Miao-Feng, X., Lin, W., De-Sen, W., Ke-Wei, C., & Hua-Yan, C. (2019). First report of *Telenomus remus* parasitizing *Spodoptera frugiperda* and its natural parasitism in South China. *Journal of Hymenoptera Research*, 73, 95 -102. https://doi.org/10.1101/697920.
- Mahat, K., Mitchell, A., & Zangpo, T. (2021). An updated global COI barcode reference data set for Fall Armyworm (*Spodoptera frugiperda*) and first record of this species in Bhutan. *Journal of Asia Pacific Entomology*, 24(1), 105 -109.
- Matsuo, K., Hirose, Y., & Johnson, N. F. (2014). A taxonomic issue of two species of *Trissolcus* (Hymenoptera: Platygastridae) parasitic on eggs of the brown-winged green bug, Plautia stali (Hemiptera: Pentatomidae): resurrection of *T. plautiae*, a cryptic species of *T. japonicus* revealed by morphology, reproductive isolation and molecular evidence. *Applied entomology and zoology*, 49, 385-394.
- Miller, K.E., Polaszek, A., & Evans, D.M. (2021). A dearth of data: fitting parasitoids into ecological networks. *Trends in Parasitology*, 37(10), 863 -874.
- Mita, T., Nishimoto, H., Shimizu, N., & Mizutani, N. (2015). Occurrence of *Trissolcus basalis* (Hymenoptera, Platygastridae), an egg parasitoid of *Nezara viridula* (Hemiptera, Pentatomidae), in Japan. *Applied entomology and zoology*, 50, 27-31.
- Murphy, N. P., Carey, D., Castro, L. R., Dowton, M., & Austin, A. D. (2007). Phylogeny of the platygastroid wasps (Hymenoptera) based on sequences from the 18S rRNA, 28S rRNA and cytochrome oxidase I genes: implications for the evolution of the ovipositor system and host relationships. *Biological Journal of the Linnean Society*, 91(4), 653-669.
- Nagoshi, R.N., Brambila, J., & Meagher, R.L. (2011). Use of DNA barcodes to identify invasive armyworm *Spodoptera* species in Florida. *Journal of Insect Science*, 11(1), 154.
- Nixon, G.E.J. (1937). Some Asiatic Telenominae (Hymenoptera: Proctotrupoidea). Annals and Magazine of Natural History, 20, 444 -475.
- Ogunfunmilayo, A.O., Kazeem, S.A., Idoko, J.E., Adebayo, R.A., Fayemi, E.Y., Adedibu, O.B., Oloyede-Kamiyo, Q.O., Nwogwugwu, J.O., Akinbode, O.A., Salihu, S., Offord, L.C., Buddie, A.G., & Ofuya, T.I. (2021). Occurrence of natural enemies of fall armyworm, *Spodoptera frugiperda* (Lepidoptera: Noctuidae) in Nigeria. *Plos one*, 16(7), e0254328. https://doi.org/10.1371/journal. pone.0254328.
- Pogue MG. (2002). A world revision of the genus *Spodoptera* Guenée (Lepidoptera: Noctuidae) Philadelphia. *Memoirs of the American Entomological Society*, 53,1-201.
- Polaszek, A. & Kimani, S.W. (1990). *Telenomus* species (Hymenopetra: Scelionidae) attacking eggs of pyralid pests (Lepidoptera) in Africa: A review and guide to identification. *Bulletin of Entomological Research*, 80(1), 57 -71.
- Polaszek, A., Al-Riyami, A., Lahey, Z., Al-Khatri, S.A., Al-Shidi, R.H., & Hardy, I.C. (2021). *Telenomus nizwaensis* (Hymenoptera: Scelionidae), an important egg parasitoid of the pomegranate butterfly *Deudorix livia* Klug (Lepidoptera: Lycaenidae) in Oman. *Plos one*, 16(5), e0250464. https://doi.org/10.1371/journal.pone.0250464.
- Pomari, A.F., Bueno, A.D.F., De Freitas Bueno, R.C.O., & De Oliveira Menezes Junior, A. (2012). Biological characteristics and thermal requirements of the biological control agent *Telenomus remus* (Hymenoptera: Platygastridae) reared on eggs of different species of the genus *Spodoptera* (Lepidoptera: Noctuidae). *Annals of Entomological Society of America*, 105(1), 73 -81.
- Rajmohana, K., Sushama, V., Rupam Debnath, Sunita Patra, Amina, P., & Dinesh, K.P. (2024). *Telenomus gregalis* Rajmohana sp.n.(Hymenoptera: Scelionidae), a gregarious egg parasitoid of the jujube

A Novel Host Association of Telenomus remus

lappet moth, *Streblote siva* (Lefèbvre) (Lepidoptera: Lasiocampidae) from India. *Journal of Natural History* ,58, 204-217.

- Ramírez-Ahuja, M.D., Garza-González, E., Talamas, E.J., Gómez-Govea, M.A., Rodríguez-Pérez, M.A., Zambrano-Robledo, P., Rebollar-Tellez, E., & Rodríguez-Sanchez, I.P. (2020). Parasitoids of Chrysopidae Eggs in Sinaloa Mexico. *Insects*, 11(12), 849. https://doi.org/10.3390/insects11120849.
- Ramírez-Ahuja, M.L, Dávila-Barboza, J.A., Talamas, E.J., Moore, M.R., Bobadilla-Utrera, C., Ponce-Garcia, G., Rodriguez-Sanchez, I.P., & Flores, A.E. (2021). First record of *Telenomus fariai* Costa Lima, 1927 (Hymenoptera, Scelionidae, Telenominae) as a parasitoid of *Triatoma dimidiata* (Latreille, 1811) (Hemiptera, Reduviidae, Triatominae) eggs in Mexico. *Journal of Hymenoptera Research*, 87, 309 -22.
- Sari, A., Buchori, D. & Nurkomar, I. (2021). Effect of host-larval diet on the host acceptance and host suitability of the egg parasitoid *Telenomus remus* Nixon (Hymenoptera: Scelionidae) on *Spodoptera frugiperda* JE Smith (Lepidoptera: Noctuidae). *Journal of Tropical Plant Pests Disease*, 21(2), 158-165.
- Taekul, C., Valerio, A.A., Austin, A.D., Klompen, H., & Johnson, N.F. (2014). Molecular phylogeny of telenomine egg parasitoids (Hymenoptera: Platygastridae sl.: Telenominae): evolution of host shifts and implications for classification. *Systematic Entomology*, 39(1), 24 -35.
- Trifinopoulos, J., Nguyen, L.T., von Haeseler, A., & Minh, B.Q. (2016). W-IQ-TREE: a fast-online phylogenetic tool for maximum likelihood analysis. *Nucleic acids research*, 44(W1), W232 -W235. https://doi.org/10.1093/nar/gkw256.
- Van De Vossenberg, B.T.L.H., & Van der Straten, M.J. (2014). Development and validation of real-time PCR tests for the identification of four Spodoptera species: Spodoptera eridania, Spodoptera frugiperda, Spodoptera littoralis, and Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 107(4), 1643 -1654. https://doi.org/10.1603/ec14132.
- Watabiki, D., Yoshimatsu, S.I., Yoshitake, H., Baba, Y., Uesato, T., Shimatani, M., Ibusuki, H., & Yuda, T. (2013). Discrimination methods for Japanese pest species of *Spodoptera* Guenée (Lepidoptera: Noctuidae) lured by traps using a synthetic sex pheromone for *Spodoptera exempta*. *Jpanase Journal of Applied Entomology and Zoology*, 57(1), 19 -26.
- Wengrat, A. P. G., Carvalho, L. C., Pietrowski, V., Schoeninger, K., Costa, V. A., & Johnson, N. F. (2024). First Record of *Telenomus dilophonotae* (Hymenoptera, Scelionidae), Parasitizing Eggs of *Erinnyis ello* (Lepidoptera, Sphingidae) in Western Paraná, Brazil, with Molecular Characterization and Records of Occurrences. *Neotropical Entomology*, 53, 1162 -1167.
- Wengrat, A.P.G.S., Coelho Junior, A., Parra, J.R.P., Takahashi, T.A., Foerster, L.A., Corrêa, A.S., Polaszek, A., Johnson, N.F., Costa, V.A., & Zucchi, R.A. (2021). Integrative taxonomy and phylogeography of *Telenomus remus* (Scelionidae), with the first record of natural parasitism of *Spodoptera* spp. in Brazil. *Scientific Report*, 11(1), 14110. https://doi.org/10.1038/s41598-021-93510-3.
- Wojcik, B., Whitcomb, W.H., & Habeck, D.H. (1976). Host range testing of *Telenomus remus* (Hymenoptera: Scelionidae). *Florida Entomologist*, 59(2), 195 -198.
- Zahiri, R., Lafontaine, J.D., Schmidt, B.C., Dewaard, J.R., Zakharov, E.V., & Hebert, P.D. (2014). A transcontinental challenge-a test of DNA barcode performance for 1,541 species of Canadian Noctuoidea (Lepidoptera). *Plos one*, 9(3), p.e92797. doi:10.1371/journal.pone.0092797.

APPENDICES

Table A1. The mt COI sequence details used in ML tree construction for *Telenomus remus*.

SI.	Taxon	NCBI accession no.	Collection Locality	References
1	Telenomus remus	PP475445	India	This study
2	Telenomus remus	PP481554	India	This study
3	Telenomus remus	PP524920	India	This study
4	Telenomus remus	PP537412	India	This study
5	Telenomus remus	MK533758	Kenya	Kenis et al. 2019
6	Telenomus remus	MN123243	China	Liao et al. 2019
7	Telenomus remus	MW452546	Egypt	Unpublished
8	Telenomus dilophonotae	OQ720989	Brazil	Wengrat et al. 2024
9	Telenomus dilophonotae	OQ720987	Brazil	Wengrat et al. 2024
10	Telenomus dilophonotae	OQ720988	Brazil	Wengrat et al. 2024
11	Telenomus sp.	KC778469	Thailand	Taekul et al. 2014
12	Telenomus rowani	KM485693	Ecuador	Unpublished
13	Telenomus sp.	KC778476	Venezuela	Taekul et al. 2014
14	Telenomus goniopis	KC778477	USA	Taekul et al. 2014
15	Telenomus goniopis	KC778478	USA	Taekul et al. 2014
16	Telenomus dignus	KR270640	China	Unpublished
17	Telenomus laeviceps	KY308192	Switzerland	Unpublished
18	Telenomus lobatus	MT846081	Mexico	Ramirez-Ahuja et al. 2020
19	Telenomus tridentatus	MT846082	Mexico	Ramirez-Ahuja et al. 2020
20	Telenomus busseolae	DQ888418	-	Murphy et al. 2007
21	Telenomus chrysopae	AB847148	Japan	Matsuo et al. 2014
22	Telenomus sp.	KC778467	USA	Taekul et al. 2014
23	Telenomus sp.	KC778466	Kenya	Taekul et al. 2014
24	Telenomus droozi	MG378552	Canada	Unpublished
25	Telenomus droozi	MG382171	Canada	Unpublished
26	Telenomus coloradensis	MG506911	Canada	Unpublished
27	Telenomus sp.	KC778446	Thailand	Taekul et al. 2014
28	Telenomus sp.	KC778482	Thailand	Taekul et al. 2014
29	Telenomus sp.	KC778449	Kenya	Taekul et al. 2014
30	Telenomus nizwaensis	MT635051	Oman	Polaszek et al. 2021
31	Telenomus nizwaensis	MT635053	Oman	Polaszek et al. 2021
32	Telenomus nizwaensis	MT635052	Oman	Polaszek et al. 2021
33	Telenomus dalmanni	KC778450	Sweden	Taekul et al. 2014
34	Telenomus dalmanni	KC778451	Sweden	Taekul et al. 2014
35	Telenomus dalmanni	KC778452	Sweden	Taekul et al. 2014
36	Telenomus dendrolimi	PP908410	China	Chen et al. 2024
37	Telenomus dendrolimi	PP908411	China	Chen et al. 2024
38	Telenomus gregalis	KT896659	India	Rajmohana et al. 2024
39	Telenomus moricolus	LC363967	Japan	Matsuo et al. 2018
40	Telenomus sp.	KC778468	Colombia	Taekul et al. 2014
41	Telenomus turesis	AB971833	Japan	Mita et al. 2015
42	Telenomus turesis	KY840564	Pakistan	Unpublished
43	Telenomus sechellensis	KC778461	Kenya	Taekul et al. 2014
44	Telenomus sp.	KC778445	USA	Taekul et al. 2014
45	Telenomus sp.	KC778455	Canada	Taekul et al. 2014
46	Telenomus sp.	KC778457	Venezuela	Taekul et al. 2014

A Novel Host Association of Telenomus remus

Table continued

SI.	Taxon	NCBI accession no.	Collection Locality	References
47	Telenomus sp.	KC778458	Canada	Taekul et al. 2014
48	Telenomus sp.	KC778459	Canada	Taekul et al. 2014
49	Telenomus dolichocerus	KC778465	USA	Taekul et al. 2014
50	Telenomus sp.	KC778453	California	Taekul et al. 2014
51	Telenomus podisi	KC778460	USA	Taekul et al. 2014
52	Telenomus sp.	KC778479	USA	Taekul et al. 2014
53	Telenomus sp.	KC778480	Venezuela	Taekul et al. 2014
54	Telenomus sp.	KC778456	Panama	Taekul et al. 2014
55	Telenomus consimilis	KC778448	Venezuela	Taekul et al. 2014
56	Telenomus grenadensis	KC778462	Venezuela	Taekul et al. 2014
57	Telenomus nysivorus	KC778447	USA	Taekul et al. 2014
58	Telenomus crassiclava	DQ888419	-	Murphy et al. 2007
59	Telenomus sp.	KC778475	Mexico	Taekul et al. 2014
60	Telenomus sp.	KC778470	Ecuador	Taekul et al. 2014
61	Telenomus sp.	KC778471	USA	Taekul et al. 2014
62	Telenomus sp.	KC778472	USA	Taekul et al. 2014
63	Telenomus sp.	KC778474	USA	Taekul et al. 2014
64	Telenomus sp.	KC778473	USA	Taekul et al. 2014
65	Telenomus sp.	DQ888420	-	Murphy et al. 2007
66	Trissolcus basalis	KC778496	Italy	Taekul et al. 2014

Table A2. The mt COI sequence (603 bp based) details used in ML tree construction for Noctuidae.

SI	Taxon	NCBI Accession number	Collection locality	References
1	Spodoptera pecten	PP078731	India	This study
2	Spodoptera pecten	PP078735	India	This study
3	Spodoptera pecten	PV037624	India	This study
4	Spodoptera pecten	PV039679	India	This study
5	Spodoptera pecten	PV053503	India	This study
6	Spodoptera pecten	PV053502	India	This study
7	Spodoptera pecten	KX860418	Pakistan	Ashfaq et al. 2017
8	Spodoptera pecten	GU695454	Papua New Guinea	Unpublished
9	Spodoptera pecten	HQ177400	Indonesia	Kergoat et al. 2012
10	Spodoptera pecten	HQ177399	Indonesia	Kergoat et al. 2012
11	Spodoptera umbraculata	HQ950507	Australia	Unpublished
12	Spodoptera depravata	AB733682	Japan	Watabiki et al. 2013
13	Spodoptera sp.	KX243390	China	Unpublished
14	Spodoptera cilium	JN988598	Pakistan	Unpublished
15	Spodoptera exigua	AB733674	Japan	Watabiki et al. 2013
16	Spodoptera hipparis	JN262118	USA	Unpublished
17	Spodoptera mauritia	AB733409	Japan	Watabiki et al. 2013
18	Spodoptera mauritia	KC601856	India	Unpublished
19	Spodoptera mauritia acronyctoides	HQ177386	Papua New Guinea	Kergoat et al. 2012
20	Spodoptera triturata	KJ634311	Zimbabwe	Van De Vossenberg, & Van der Straten, 2014
21	Spodoptera exempta	JQ315120	Tanzania	Graham & Wilsom, 2012
22	Spodoptera apertura	KF388292	Australia	Hebert et al. 2013
23	Spodoptera litura	AB733672	Japan	Watabiki et al. 2013
24	Spodoptera littoralis	FN907993	United Kingdom	Unpublished

able ontinued	SI	Taxon	NCBI Accession number	Collection locality	References
	25	Spodoptera picta	HQ950412	Australia	BOLD database
	26	Spodoptera picta	LOQC210-05	Australia	BOLD database
	27	Spodoptera pectinicornis	MW666002	Australia	Kergoat et al. 2021
	28	Spodoptera pulchella	HM756075	USA	Nagoshi et al. 2011
	29	Spodoptera androgea	KJ634282	Suriname	Van De Vossenberg, & Van der Straten, 2014
	30	Spodoptera cosmioides	JF854736	Brazil	Unpublished
	31	Spodoptera descoinsi	KF854163	France	Dumas et al. 2015
	32	Spodoptera evanida	KF854176	France	Dumas et al. 2015
	33	Spodoptera evanida	KF854175	France	Dumas et al. 2015
	34	Spodoptera dolichos	JQ602911	Costa Rica	Unpublished
	35	Spodoptera latifascia	BLPAA21562-20	Costa Rica	BOLD database
	36	Spodoptera latifascia	MHMYK15102-16	Costa Rica	BOLD database
	37	Spodoptera ornithogalli	JF855012	USA	Unpublished
	38	Spodoptera praefica	KF492567	USA	Unpublished
	39	Spodoptera teferii	MH817649	Ethiopia	Le et al. 2018
	40	Spodoptera albula	KJ634281	Costa Rica	Van De Vossenberg, & Van der Straten, 2014
	41	Spodoptera ochrea	KJ634308	Peru	Van De Vossenberg, & Van der Straten, 2014
	42	Spodoptera eridania	KJ634290	Suriname	Van De Vossenberg, & Van der Straten, 2014
	43	Spodoptera frugiperda	KJ634299	Peru	Van De Vossenberg, & Van der Straten, 2014
	44	Galgula partita	JN262120	USA	Unpublished
	45	Acronicta psi	HM875345	Finland	Unpublished
	46	Mythimna loreyi	LC548630	Japan	Unpublished
	47	Sesamia inferens	LC548617	Japan	Unpublished
	48	Mamestra configurata	KJ393069	Canada	Zahiri et al. 2014
	49	Helicoverpa armigera	LC548612	Japan	Unpublished
	50	Noctua pronuba	KM552700	Canada	Unpublished
	51	Agrotis ipsilon	JN284032	Germany	Unpublished
	52	Eutelia pulcherrima	GU694338	USA	Unpublished
	53	Hyphantria cunea	AB105318	USA	Unpublished
	54	Lymantria dispar	KY923064	Russia	Djoumad et al. 2017
	55	Catocala robinsoni	KJ380304	USA	Unpublished
	56	Catocala clintoni	KJ379740	USA	Unpublished