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ABSTRACT
Few mitogenomes sequences are available for Agrilus species in the family Buprestidae. To explore the 

mitochondrial genome features and their phylogenetic relationships, the complete mitogenome of the trunk 
borer jewel beetle, Agrilus zanthoxylumi, Li, 1989 (花椒窄吉丁) was sequenced and annotated. The complete 
16,320 bp genome encodes 37 mitochondrial genes, including 13 protein-coding genes (PCGs), 22 transfer 
RNA (tRNA) genes, 2 ribosomal RNA genes, and a 1526-bp-long AT-rich region. Most of the PCGs, except ND1 
which uses TTG had typical ATN start codons, and terminated with TAA/TAG or a single T residue. In addition, 
UUA (Leu2), UCU (Ser2), CGA (Arg), and GGA (Gly) were the four most frequently used codons. All tRNAs 
were folded into a secondary cloverleaf structure, except for tRNASer, which lacks the DHU arm. The analysis of 
the nonsynonymous and synonymous substitution rates of PCGs showed that a strong purifying and negative 
selection exists in those buprestid beetles. Phylogenetic analyses within the subfamily Agrilinae were performed 
using concatenation methods based on multiple matrices from mitochondrial genes. The phylogenetic results 
indicated that A. zanthoxylumi is clustered with other species of Agrilus. All phylogenetic trees supported the 
monophyly of Agrilinae and Trachini, but the tribal relationship in Agrilinae remains ambiguous.

Keywords: Agrilus zanthoxylumi, mitogenome, next-generation, phylogeny, jewel beetle.
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INTRODUCTION
The family Buprestidae is one of the largest in the order Coleoptera, containing 

six subfamilies, 521 genera, and over 15,000 species (Jendek, 2024). The Agrilinae 
is the largest subfamily in the family Buprestidae and indeed within the class Insecta, 
according to modern classification systems; it contains four tribes (Coraebini, Agrilini, 
Aphanisticini, and Tracheini) (Bellamy, 2008; Huang, Wei, Lu, & Shi, 2023). Larvae 
of species in the tribes of Agrilini and Coraebini are wood-boring species (Jendek, 
2016; Jendek & Nakla´dal, 2019; Kelnarova, Jendek, Grebennikov, & Bocak, 2019), 
while larvae of the tribes of Aphanisticini and Tracheini are leaf miners (Kato & 
Kawakita 2023; Mahesh, Chandran, Manjunatha, & Balan, 2013; Shi, Wu, Dai, Xu & 
Song, 2023). The genus Agrilus comprises over 3,000 species, which are distributed 
globally (Bozorov, Luo, Li, & Zhang, 2019). Some species are important pests in forest 
ecosystems causing economic problems for forest managers (Herms & McCullough, 
2014). For example, Agrilus planipennis, known as the emerald ash borer, is a pest 
of ash trees (Fraxinus spp.) (Jendek & Poláková, 2014), while Agrilus auroguttatus, 
the gold-spotted oak borer, poses a threat to oak trees (Lopez, Rugman-Jones, 
Coleman, Hoddle, & Stouthamer, 2014). Currently, the number of fully sequenced 
mitochondrial genomes for the Agrilus recorded in the NCBI database is fewer than 
10, which constitutes less than 1% of the species within this genus. No research on 
the mitochondrial genome of Agrilus zanthoxylumi has been conducted or completed 
previously.

Despite extensive taxonomic research based on morphological characters, the 
phylogenetic relationships within the subfamilies and tribes of the Buprestidae remain 
uncertain (Cobos, 1980, 1986; Tôyama, 1987; Hoghoyoski, 2009; Huang, Chen, 
Wei, & Shi, 2022). Wei, Huang, & Shi (2023) highlighted the ongoing debate over 
the phylogenetic position of the genus Sambus. Evans, Mckenna, Bellamy, & Farrell 
(2015) constructed the first comprehensive phylogenetic trees (141 species) using 
nuclear and mitochondrial data, confirming the monophyly of the family Schizopodidae 
and certain subfamilies of the family Buprestidae. Molecular studies suggest Agrilus 
viridis is monophyletic, with feeding forms indicating distinct species (Bernhard, 
Fritzsch, Glöckner, & Wurst, 2005; Pentinsaari, Mutanen, & Kaila, 2014; Pellegrino, 
Curletti, Liberatore, & Cucco, 2017). In addition, DNA barcoding was found effective 
for the identification of Agrilus species by Kelnarova et al (2019). Recently, Wei (2022) 
confirmed the monophyly of the Agrilinae but found the Coraebini to be paraphyletic 
in a phylogenetic analysis of four subfamilies and 15 species of the Buprestidae.

In the present study, the mitogenome of A. zanthoxylumi Li, 1989 (花椒窄吉丁) was 
assembled for the first time, and was used to conduct a comprehensive phylogenetic 
analysis within the subfamily Agrilinae combining the published agriline mitogenome 
data in the NCBI database.
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MATERIALS AND METHODS

Sample collection, identification, and DNA extraction
The adult specimens of A. zanthoxylumi used in this study were collected on 26 

March 2022 from Zhenfeng County, Guizhou Province, China (25°24′N, 105°35′E). 
Specimens were immediately immersed in 100% ethanol after collected and stored 
at −20°C until used for DNA extraction. A voucher specimen has been retained at the 
Institute of Entomology, Guizhou University, Guiyang, Guizhou, China (GUGC). One 
specimen was sent to Berry Genomics Co., Ltd. (Beijing, China) for DNA extraction 
and sequencing. The DNA concentrations were determined using a Qubit® DNA 
Assay Kit and a Qubit® 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA). For 
sample preparation for sequencing, 1.5 µg of DNA was used as the input material for 
each sample. A TruSeq Nano DNA HT sample preparation kit (Illumina, San Diego, 
CA, USA) was used to construct a sequencing library for each sample following the 
manufacturer’s instructions. An index code was inserted into the attribute sequence 
of each sample.

Mitogenome sequencing, assembly, and annotation
Illumina TruSeq libraries with an average insert size of 350 bp were generated 

and sequenced on an Illumina NovaSeq 6000 platform (Beijing Berry Bioinformatics 
Technology Co., Ltd., Beijing, China), yielding 150-bp paired-end reads. An initial 
annotation of the mitogenome was conducted using Mitoz 2.4-alpha software 
(Meng, Li, Yang, & Liu, 2019) with the available invertebrate mitochondrial genetic 
information. The locations and secondary structures of transfer RNA genes (tRNAs) 
were reconfirmed and predicted using the MITOS web server (http://mitos2.bioinf.
uni-leipzig.de/index.py; accessed on September 9, 2022) (Bernt et al., 2013) and the 
tRNAscan-SE search server (http://lowelab.ucsc.edu/tRNAscan-SE; accessed on 
September 20, 2022) (Lowe & Chan, 2016). Next, tRNA secondary structures were 
manually drawn in Adobe Illustrator. Circular mitogenome maps were visualized using 
Geneious Prime bioinformatics software (Kearse et al., 2012).

Thirteen protein-coding genes (PCGs) present in the mitogenome of A. zanthoxylumi 
were manually examined and aligned with published mitogenome sequences of other 
species from the Agrilinae, including Agrilus ornatus (NC_064400), A. planipennis 
(NC_030758), Coraebus diminutus (NC_064326), and Meliboeus sinae (NC_064327).

Sequence analysis
The relative synonymous codon usage score was calculated using MEGA 7 

software (Kumar, Stecher, & Tamura, 2016), and base skew values were determined 
using the following formulas: AT skew = (A − T)/(A + T); and GC skew = (G − C)/(G 
+ C) (Perna & Kocher, 1995; Hassanin, Léger, & Deutsch, 2005). Geneious Prime 
was used to assess the nucleotide composition of the entire mitogenome, PCGs, 
ribosomal RNA genes (rRNAs), tRNAs, and AT content (Kearse et al., 2012). Geneious 
Prime was also used to produce circular mitogenome maps. Tandem repeats were 
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identified using the online Tandem Repeats Finder (http://tandem.bu.edu/trf/trf.html; 
accessed on September 13, 2022) (Benson, 1999). The complete mitogenome of A. 
zanthoxylumi was successfully obtained and uploaded to GenBank under accession 
number NC_081980. Next, the nonsynonymous substitution rate (Ka) and synonymous 
substitution rate (Ks) of 13 PCGs were calculated from three Agrilus species (i.e., 
A. zanthoxylumi, A. planipennis, and A. ornatus) using DnaSP version 5 (Librado & 
Rozas, 2009).

Phylogenetic analysis
A comprehensive phylogeny inference was performed using the mitogenome 

sequences of 18 agriline beetle species (ingroup) and 4 other buprestid beetle species 
(outgroup), which were downloaded from the NCBI database, although the newly 
sequenced species, A. zanthoxylumi, was not included (Table 1).
Table 1. List of species analyzed in this study and corresponding GenBank accession IDs.

Family Subfamily Tribe Species Length ID Reference

Buprestidae Agrilinae Sambus femoralis 15,367 NC_064328 Wei 2022

Sambus kanssuensis 15,411 NC_080317 Huang et al. 2023

Tracheini Trachys variolaris 16,771 NC_060322 Cao and Wang 2019a

Trachys auricollis 16,429 NC_046045 Xiao, Zhang, Long, Guo,
Xu, Dai & Wang, 2019

Habroloma sp. 16,273 OQ784266 Unpublished
Coraebini Coraebus diminutus 15,499 NC_064326 Wei 2022

Coraebus cloueti 15,514 NC_064325 Wei 2022
Coraebus cavifrons 15,686 NC_060321 Cao and Wang 2019b
Meliboeus sinae 16,108 NC_064327 Holy’nski 1993

Agrilini Agrilus adelphinus 15,732 NC_071932 Unpublished
Agrilus discalis 15,784 NC_069980 Huang et al. 2023
Agrilus mali 16,204 MN894890 Sun et al. 2020
Agrilus ornatus 15,789 NC_064400 Unpublished
Agrilus planipennis 15,942 NC_030758 Duan et al. 2017
Agrilus sichuanus 16,521 NC_064324 Wei 2022
Agrilus zanthoxylumi 16,320 NC_081980 This study

Aphanisticini Cantonius szechuanensis 15972 NC_080316 Huang et al. 2023
Endelus continentalis 16,246 NC_067866 Huang et al. 2023

Julodinae Julodis variolaris (outgroup) 16,227 NC_071967 Wei et al. 2023
Polycestinae Coomaniella copipes (outgroup) 16,196 NC_063146 Huang et al. 2022

Ptosima chinensis (outgroup) 16,115 NC_071966 Wei et al. 2023
Dryopidae Dryops ernesti (outgroup) 15,672 NC_036275 Linard et al. 2016

The nucleotide sequences of 13 PCGs and 2 ribosomal RNAs (12S rRNA + 16S 
rRNA), as well as the amino acids from the 13 PCGs, were aligned using the highly 
accurate L-INS-I strategy in MAFFT v7.394 software (Katoh & Standley, 2013). The 
aligned sequences were then trimmed using the heuristic “automated1” method in 
trimAl tool v1.4.1 (Capella-Gutiérrez, Silla-Martínez, & Gabaldón, 2009) to remove 
positions containing only gaps or ambiguities. Finally, the trimmed sequences were 
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concatenated using FASconCAT-G v1.04 software (Kück & Longo, 2014). Finally, four 
matrices were generated for the phylogeny inference: (1) the amino acid sequences of 
the 13 protein-coding genes (PCGs_faa); (2) the nucleotide sequences of 13 PCGs, 
excluding the third codon position (PCG12_fna); (3) the nucleotide sequences of 13 
PCGs plus two ribosomal RNA sequences (PCG_rrna); and (4) PCG12_fna plus 
two rRNAs with the two ribosomal RNA sequences (PCG12_rrna). The third codon 
positions were excluded from the nucleotide-based analyses to reduce the potential 
bias or long-branch attraction issues caused by substitution saturation among species 
belonging to different genera (Leebens-Mack et al., 2005; Stefanović, Rice, & Palmer, 
2004). The models used to construct phylogenetic trees for different matrices are 
shown in Table 2. In this study, values greater than 98% (SH-aLRT, UFBoot2) and 
0.99% (posterior probability) are considered to be of a “high” support; values of 
80% to 98% for SH-aLRT, 95% to 98% for UFBoot2, and 0.95% to 0.99% for the 
posterior probability are considered to be of a “moderate” support; and values of 95% 
for UFBoot2 and 0.95% for the posterior probability are considered to be of a “low” 
support. Phylogenetic trees were visualized using FigTree 1.4.3 software (available 
at http://tree.bio.ed.ac.uk/software/figtree).
Table 2. Best-fit models of four datasets used for phylogeny.

Matrices Maximum likelihood Bayesian inference

PCGs_faa LG+I+G; mtART+H4; mtART+C20+F+G CAT+GTR

PCG12_fna GTR+I+G

PCG_rrna GTR+F+I+G4 CAT+GTR

PCG12_rrna GTR+I+G

RESULTS AND DISCUSSION

Mitogenome structure and organization
The complete mitochondrial genome of A. zanthoxylumi (GenBank accession 

no. NC_081980) is 16,320 bp in length and includes 13 PCGs, 22 tRNA genes, 2 
rRNA genes, and an AT-rich region. The length and composition of the mitochondrial 
genes of this species are highly similar to those of other buprestid species (Duan et 
al., 2017; Cao & Wang, 2019a, 2019b; Chen, Wei, & Shi, 2021; Peng, Liu, Wang, 
& Zhan, 2021; Wei, 2022). As in most Buprestidae, 23 of the 37 genes are located 
on the major strand (F-strand), while the remaining 14 genes (including 8 tRNAs, 2 
rRNAs, and 4 PCGs) are encoded on the minor strand (R-strand) (Fig. 1; Table 3). We 
also identified 13 gene overlaps (−40 to −1 bp in length) and 10 intergenic spacers 
(1-58 bp in length) within the mitogenome of A. zanthoxylumi (Table 3). Finally, we 
discovered a 7-bp overlapping region between ATP8 and ATP6 and between ND4 and 
ND4L; these small overlaps have often been reported in the mitochondrial genomes 
of insects (Huang et al., 2022).
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Table 3. Organization of the Agrilus zanthoxylumi mitochondrial genome.

Gene Direction Location (bp) Size (bp)
Codon

Anti-codon IGN
Start Stop

tRNAIle F 1-63 63 - - GAT
tRNAGln R 61-129 69 - - TTG -3
tRNAMet F 132-200 69 - - CAT 2
ND2 F 201-1226 1026 ATA TAA - 0
tRNATrp F 1226-1295 70 - - TCA -1
tRNACys R 1354-1415 62 - - GCA 58

tRNATyr R 1416-1477 62 - - GTA 0

COX1 F 1488-3024 1537 ATG T- - 10
tRNALeu F 3025-3092 68 - - TAA 0
COX2 F 3093-3774 682 ATT T- - 0
tRNALys F 3775-3844 70 - - CTT 0
tRNAAsp F 3845-3908 64 - - GTC 0

ATP8 F 3909-4064 156 ATC TAG - 0

ATP6 F 4058-4732 675 ATG TAA - -7
COX3 F 4732-5520 789 ATG TAG - -1
tRNAGly F 5527-5590 64 - - TCC 6
ND3 F 5591-5944 354 ATT TAG - 0
tRNAAla F 5948-6012 65 - - TGC 3
tRNAArg F 6012-6075 64 - - TCG -1
tRNAAsn F 6076-6140 66 - - GTT -1
tRNASer F 6141-6207 67 - - TCT 0
tRNAGlu F 6212-6275 64 - - TTC 4
tRNAPhe R 6275-6337 63 - - GAA -1
ND5 R 6338-8060 1723 ATA T- - 0
tRNAHis R 8061-8125 65 - - GTG 0
ND4 R 8126-9461 1336 ATG T- - 0
ND4L R 9455-9739 285 ATG TAA - -7
tRNAThr F 9755-9817 63 - - TGT 15
tRNAPro R 9817-9881 65 - - TGG -1
ND6 F 9883-10,389 507 ATT TAA - 1
CYTB F 10,389-11,537 1149 ATG TAG - -1
tRNASer F 11,536-11,602 67 - - TGA -2
ND1 R 11,623-12,573 951 TTG TAA - 20
tRNALeu R 12,575-12,642 68 - - TAG 1
16S rRNA R 12,603-13,931 1329 - - - -40
tRNAVal R 13,914-13,982 69 - - TAC -18

12S rRNA R 13,983-14,794 812 - - - 0

A+T rich 
region F 14,795-16,320 1526 - - - 0

The overall base composition of the complete mitochondrial genome was determined 
to be as follows: adenine (A), 40.5%; thymine (T), 34.2%, guanine (G), 10.7%, and 
cytosine (C), 14.6%. The mitogenome as a whole was found to have a relatively high AT 
content (74.7%) and correspondingly low GC content. These findings were consistent 
with those reported by Wei (2022). As observed in other buprestid species, a slightly 
positive AT bias (0.084) was found for the complete mitochondrial genome (Duan et 
al., 2017; Xiao et al., 2019; Peng et al., 2021; Huang et al., 2022; Wei, 2022).
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PCGs
The 13 PCGs found in A. zanthoxylumi have a total combined length of 11,136 

bp. These 13 genes include 9 genes (i.e., ND2, ND3, ND6, COI, COII, COIII, ATP6, 
ATP8, and CYTB) located on the major strand (F-strand) and 4 genes (i.e., ND1, 
ND4, ND4L, and ND5) located on the minor strand (R-strand) (Table 4). All AT and 
GC skews of the PCGs are negative, except the GC skew at the first codon position 
is positive (Table 4). All protein-coding sequences originated with a typical ATN codon, 
except for ND1, which had a TTG start codon (Table 3) (Ma, Liu, Yang, & Kang, 
2009). According to mitochondrial data sourced from the NCBI database, specific 
modifications to the ND1 start codon are regularly found in most Buprestidae species. 
However, ATN is the start codon in Coraebus cavifrons (Cao & Wang, 2019a) and A. 
planipennis (Duan et al., 2017). Furthermore, nine PCGs were found that possessed 
complete stop codons (i.e., TAA/TAG), whereas four (i.e., COI, COII, ND4, and ND5) 
had incomplete stop codons (i.e., T-).
Table 4. Nucleotide composition, AT skew, and GC skew of different regions of the mitochondrial ge-

nome of Agrilus zanthoxylumi.

Genes Size (bp)
Nucleotides composition

ATskew GCskew
T (%) C (%) A (%) G (%) A+T (%)

Complete mitogenome 16,320 34.2 14.6 40.5 10.7 74.7 0.084 −0.154

Protein-coding genes 11,136 41.8 13.3 31.9 13.0 73.7 −0.134 −0.011

1st codon position 3713 38.4 10.6 36.7 14.2 75.1 −0.023 0.145

2nd codon position 3711 42.9 17.0 24.9 15.2 67.8 −0.265 −0.056

3rd codon position 3712 44.2 12.2 34.0 9.6 78.2 −0.130 −0.119

tRNA 1447 36.7 12.6 40.6 10.2 77.3 0.050 −0.105

rRNA 2141 34.6 14.2 43.2 8.0 77.8 0.111 −0.279

16S rRNA 1329 34.8 13.8 43.7 7.7 78.5 0.113 −0.284

12S rRNA 812 34.4 14.7 42.4 8.6 76.8 0.104 −0.262

A+T rich region 1526 34.2 16.6 41.2 7.9 75.4 0.093 −0.355

Subsequently, the nonsynonymous substitution rate (Ka), the synonymous 
substitution rate (Ks), and the Ka/Ks ratio (ω) were calculated for each PCG of the 
three species from the genus Agrilus (Fig. 2). The value of COXI was obviously lower 
than others, which indicates that the COXI gene has a relatively slower evolutionary 
rate; this phenomenon is almost universal at all insects (Liu et al., 2012; Li, Hu, & Hua, 
2019; Gong et al., 2018). Meanwhile, COX3 showed significantly higher ω values 
than the other PCGs (Fig. 2). Notably, the ω values of all PCGs were from 0.102 to 
0.849 (0<ω<1), suggesting the presence of purifying selection at these loci. Therefore, 
all mitochondrial PCGs were used to analyze the phylogenetic relationships among 
Buprestidae species.

Finally, the relative synonymous codon usage values were determined for the 
mitochondrial PCGs of A. zanthoxylumi. The four codons that were most frequently 
used were: UUA (L), UCU (S), CGA (R), and GGA (G) (Table 5; Fig. 3).
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Table 5. Codon and relative synonymous codon usage of 13 protein-coding genes of the mitochondrial 
genome of Agrilus zanthoxylumi. An asterisk (*) represent termination codon.

Amino acid Codon Count RSCU Amino acid Codon Count RSCU

Phe UUU 319 1.74 Tyr UAU 118 1.64

UUC 48 0.26 UAC 26 0.36

Leu2 UUA 390 4.11 His CAU 50 1.47

UUG 37 0.39 CAC 18 0.53

Leu1 CUU 66 0.70 Gln CAA 58 1.63

CUC 7 0.07 CAG 13 0.37

CUA 61 0.64 Asn AAU 162 1.71

CUG 8 0.08 AAC 27 0.29

Ile AUU 329 1.78 Lys AAA 88 1.59

AUC 40 0.22 AAG 23 0.41

Met AUA 237 1.78 Asp GAU 53 1.63

AUG 30 0.22 GAC 12 0.37

Val GUU 72 1.64 Glu GAA 65 1.60

GUC 5 0.11 GAG 16 0.40

GUA 87 1.98 Cys UGU 35 1.79

GUG 12 0.27 UGC 4 0.21

Ser2 UCU 100 2.26 Trp UGA 84 1.71

UCC 24 0.54 UGG 14 0.29

UCA 93 2.10 Arg CGU 15 1.13

UCG 9 0.20 CGC 8 0.60

Pro CCU 61 1.85 CGA 29 2.19

CCC 21 0.64 CGG 1 0.08

CCA 42 1.27 Ser1 AGU 35 0.79

CCG 8 0.24 AGC 6 0.14

Thr ACU 84 1.71 AGA 70 1.58

ACC 25 0.51 AGG 17 0.38

ACA 85 1.73 Gly GGU 41 0.78

ACG 2 0.04 GGC 10 0.19

Ala GCU 67 1.74 GGA 114 2.18

GCC 24 0.62 GGG 44 0.84

GCA 57 1.48 * UAA 0 0

GCG 6 0.16 UAG 0 0

Note: RSCU, relative synonymous codon usage.

Transfer RNAs and ribosomal RNAs
The total length of all tRNAs in A. zanthoxylumi is 1,447 bp, with individual tRNA 

genes ranging in size from 62 bp (i.e., tRNACys and tRNATyr) to 70 bp (i.e., tRNATrp and 
tRNALys). Eight tRNAs were encoded on the minor strand and 14 on the major strand 
(Table 3). The AT content (77.3%) of tRNA-associated areas was much greater than 
the GC content (23.7%). The AT skew of these areas was mildly positive (0.050) and 
the GC skew was negative (−0.105), thereby indicating a minor bias toward A and 
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a stronger aversion against C. In addition, the secondary structure of most tRNAs 
conforms to the typical cloverleaf secondary structure. However, tRNASer was an 
exception: it contains an unusual dihydropurine arm that forms a simple loop; this has 
also been observed in other buprestids (Fig. 4) (Xiao, Jia, Murphy, & Huang, 2011; 
Yu & Liang, 2018; Wei, 2022).

The 16S rRNA and 12S rRNA genes of A. zanthoxylumi are 1,329 bp and 812 
bp in length, respectively (Table 3). The two rRNA genes are frequently separated 
by tRNAVal in many Buprestidae species (Cao & Wang, 2019a; Huang et al., 2022; 
Wei, 2022). Furthermore, the AT content of rRNA-associated regions was 77.8% and 
showed both a positive AT skew (0.111) and a negative GC skew (−0.279) (Table 4).

AT-rich region
The AT-rich region, also known as a control region (CR), regulates the transcription 

and replication of mitochondrial DNA (mtDNA) (Zhang & Hewitt ,1997; Boore, 1999; 
Cameron, 2014). In A. zanthoxylumi, the CR is located between the 12S rRNA and 
tRNAIle genes (Fig. 1; Table 3). The CR is 1,526 bp long, and has an A+T content of 
75.4%. The AT-skew and G-skew in the control area are 0.093 and −0.355, respectively.

Phylogenetic analyses
The phylogenetic analyses of the present study included 18 species from Agrilinae 

of the Buprestidae and four outgroup species (Table 1). Three phylogenetic trees are 
shown in Figs. 5, 6, and 7; other phylogenetic trees are displayed in Supplementary 
Figures S1-S5.

The findings from both the Maximum Likelihood (ML) and the Bayesian Inference 
(BI) trees consistently showed that all species within the genus Agrilus were clustered 
together. All phylogenetic trees constructed using the GTR model consistently indicated 
that Endelus continentalis and Cantonius szechuanensis were clustered together, 
while Sambus and Agrilus did not form a sister group (Fig. 7; Figs S2-S4). For the 
phylogenetic tree built using the PCGs_faa dataset, the topologies of the LG+I+G, 
mtART+H4, and mtART+C20+F+G models were consistent, as opposed to that of the 
CAT+GTR model. In the CAT+GTR model, the taxa Coraebus and M. sinae do not 
cluster together, and E. continentalis and C. szechuanensis also do not form a clade, 
which suggests that the Coraebini and Aphanisticini tribes are non-monophyletic. The 
genera Sambus and Agrilus exhibited a sister group relationship with strong node 
support (SH-aLRT/UFBoot =98.4/93) in the phylogenetic tree of the mtART+C20+F+G 
model (Fig. 5), but showed weak node support (mtART+H4 model: SH-aLRT/UFBoot 
=97.5/53; LG+I+G model: SH-aLRT/UFBoot =95.8/57) in the other two models 
(Figs. S1 and S2). Other phylogenetic trees indicate that Sambus and Agrilus do 
not cluster together. In the past several decades, Kubáň, Majer, & Kolibáč (2000) 
transferred Sambus from the Coraebini to Agrilini based on the oviposition behavior. 
Later, the genus Sambus was placed in incertae sedis (Kubáň, 2016). The research 
results of many researchers indicate that the phylogenetic position of Sambus is 
still controversial (Huang et al., 2022; Huang et al., 2023; Wei et al., 2023). In the 
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phylogenetic tree based on the PCG_rrna, S. femoralis is positioned at the base of 
the Agrilinae subfamily, indicating a distant relationship with Agrilus, while Coraebini 
remains a non-monophyletic group (Figs. S4 and S5).

CONCLUSION
In summary, the complete mitogenome of A. zanthoxylumi, an important 

invasive pest of Chinese prickly ash (Zanthoxylum bungeanum Maxim.) in China, 
was successfully sequenced and assembled. Further detailed analyses of the A. 
zanthoxylumi mitogenome is provided, detailing gene structures, skew values, 
and codon usages in different regions, including rRNAs, tRNAs, PCGs, and the 
AT-rich region. The phylogenetic results supported that the subfamily Agrilinae and 
the tribe Trachini are monophyletic groups, but the Coraebini and Aphanisticini are 
non-monophyletic groups. Our study provide new data which can support future 
phylogenetic studies of the Agrilinae and improves our understanding of their 
mitogenomic and taxonomic characteristics. However, the phylogenetic analysis of 
the present study did not resolve the taxonomic status of some species; therefore, 
additional mitogenome sampling will be needed to resolve the molecular phylogeny 
of the Agrilinae to better understand the phylogenetics of the Agrilinae subfamily.
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Figure 1. Circular map of the mitochondrial genome of Agrilus zanthoxylumi.

Figure 2. The nonsynonymous substitution rate (Ka), synonymous substitution rate (Ks), and Ka/Ks ratio 
for 13 protein-coding genes from the mitogenomes of three species of the genus Agrilus.
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Figure 3. Relative synonymous codon usage of the mitogenome of Agrilus zanthoxylumi.

Figure 4. Secondary structures of 22 tRNAs from the mitogenome of Agrilus zanthoxylumi. Lines (-) 
indicate Watson-Crick base pairings, and dots (•) indicate unmatched base pairings.
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Figure 5. Phylogenetic tree based on the maximum likelihood analysis of the PCGs_faa matrix with the 
mtART+C20+F+G model. Note: The phylogenetic position of Agrilus zanthoxylumi sequenced in this 
study is indicated in bold. The numbers on the nodes are the SH-aLRT support (%) and ultrafast 
bootstrap support (%). Different branches of the tribes and outgroup are represented by different colors.

Figure 6. Phylogenetic tree based on the bayesian inference analysis of the PCGs_faa matrix with the 
CAT+GTR model. Note: The phylogenetic position of Agrilus zanthoxylumi sequenced in this study 
is indicated in bold. The numbers on the nodes are the SH-aLRT support (%) and ultrafast bootstrap 
support (%). Different branches of the tribes and outgroup are represented by different colors.

Figure 7. Phylogenetic tree based on the maximum likelihood analysis of the PCG12_rrna matrix with the 
GTR+I+G model. Note: The phylogenetic position of Agrilus zanthoxylumi sequenced in this study is 
indicated in bold. The numbers on the nodes are the SH-aLRT support (%) and ultrafast bootstrap 
support (%). Different branches of the tribes and outgroup are represented by different colors.
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SUPPORTING INFORMATION 

Figure S1. Pylogenetic tree based on the maximum likelihood analysis of the PCGs_faa matrix with the 
mtART+H4 model.

Figure S2. Pylogenetic tree based on the maximum likelihood analysis of the PCGs_faa matrix with the 
LG+I+G model.

Figure S3. Pylogenetic tree based on the maximum likelihood analysis of the PCG12_fna matrix with the 
GTR+I+G model.
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Figure S4. Pylogenetic tree based on the maximum likelihood analysis of the PCG_rrna matrix with the 
GTR+F+I+G4 model.

Figure S5. Pylogenetic tree based on the Bayesian inference analysis of the PCG_rrna matrix with the 
CAT+GTR model.
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