First Record of Four Scolytid Species (Coleoptera: Curculionidae) in the Balearic Islands (Western Mediterranean; Spain)

Claudia COMPARINI1a Diego GALLEGÓ3,4 Luis NÚÑEZ2
Alejandra Maria CLOSA2 Mar LEZA1a*

1Laboratory of Zoology. Dept. of Biology, University of the Balearic Islands, Ed. Guillem Colom, Cra. Valldemossa km 7.5. CP:07122 (Palma, Balearic Islands. SPAIN), a equal contribution, * mar.leza@uib.es
2Servicio de Sanidad Forestal, Conselleria de Medio Ambiente, Govern de les Illes Balears, C/ del Gremi de Corredors, 10, 1r., Poligono de Son Rossinyol, CP: 07009 (Palma, Balearic Islands. SPAIN)
3Sanidad agrícola ECONEX, S.L., C/ Mayor, Nº 15B-Edificio ECONEX, CP: 30149 (Siscar, Murcia. SPAIN)
4Department of Ecology, University of Alicante, San Vicente del Raspeig, 03690 (Alicante, SPAIN)

ABSTRACT

Bark beetles are a group of phytophagous insects which are considered important pests of conifer and broadleaf forests. In order to carry out the characterization and monitoring of bark beetles communities present in Majorca, flight interception traps (cross-vane type trap) have been placed in three plots of pine forest (Pinus halepensis) and three plots of evergreen oak forest (Quercus ilex). The content of the traps were collected monthly and were taken to the laboratory and analyzed for their entomological determination.

The main objective of this study is to present four scolytid species reported in Majorca (Balearic Islands, Spain) for the first time: Chaetoptelius vestitus, Coccotrypes dactyliperda, Xylocleptes bispinus and Xyleborus eurygraphus, as well as increase the knowledge of this coleopteran group with specific importance on forestry management in Mediterranean conditions.

Key words: Chaetoptelius vestitus, Coccotrypes dactyliperda, Xylocleptes bispinus, Xyleborus eurygraphus, Scolytinae, new records, bark beetles, Majorca.

INTRODUCTION

Scolytinae (Curculionidae), popularly known as bark and ambrosia beetles, are insects with a length range from 1 mm to ≥10 mm and present a semi-spherical or cylindrical form (Soto et al., 2002; Gallego, 2006; López et al., 2007). Scolytids are
an important insect group of forest ecosystems playing an important role in early successional forest. They are the cause of the beginning part of the decomposition process of bark and wood tissue by feeding on them directly (Wood, 1982; Gallego, 2006; Samin et al., 2011; Olenici et al., 2014). However, under conditions of weakened trees by disease, drought or burnt, some bark beetles can develop pest and can cause significant ecological and economic damage to trees in forests (Wood, 1982; Gil and Pajares, 1986; Olenici et al., 2014). Moreover, other bark beetles attack healthy trees and can kill them (Wood, 1982; Lightle et al., 2007; Samin et al., 2011; Olenici et al., 2014). In addition, scolytids facilitate the penetration of other xylophages organisms like insects, fungi and bacteria that can damage the wood tissues and causes the tree death (Gil and Pajares, 1986; Gallego, 2006, Olenici et al., 2014).

This subfamily is represented by at least 282 genera and 6000 species of which 128 species are present in the Ibero-Balearic area (Vega and Hofstetter, 2015; Goldazarena et al., 2012; Alonso-Zarazaga, 2002). The objective of this paper is to present four scolytid species reported in Majorca (Balearic Islands, Spain) for the first time and increase the knowledge of this coleopteran group with specific importance on forestry management in Mediterranean conditions.

MATERIALS AND METHODS

Site locations

The study was conducted during four years (April 2011 to March 2015) in Majorca, the largest island (3640.11 km²) of the Balearic archipelago (Western Mediterranean region). Majorca (39°30'N, 03°0'E) has a temperate climate, characterized by mild winters and hot dry summers.

The bark beetles were collected in six plots of the Balearic Network of Assessment and Monitoring of Forest Damages from the Government of the Balearic Islands. Three of these plots are pine forest (Pinus halepensis): (1) La Victòria, (2) Mondragó, (3) Albufera, and the other three plots are of evergreen oak forest (Quercus ilex): (4) Planícia, (5) Tiraset y (6) Coll Pelat. Details about the six areas are provided in Fig. 1 and Table 1.

Sampling methods

In both type of forest, bark beetles were collected using a cross-vane type trap, Crosstrap® (Econex, Murcia), performed by a cross vane of black plastic with a lower funnel where catches are in a collect jar, filled with 100 cm³ of propylene glycol 20%, to prevent evaporation (Gallego and Campo, 2010; González-Rosa et al., 2012, Olenici et al. 2014). Traps have been baited with α-pinene, ethanol and a mixture of ipsdienol, ipsenol and z-verbenol (1:1:1) (Econex, Murcia). During April 2011 to March 2015 the content of the traps were collected monthly and arthropods were stored in 70% ethanol.
Species identification

The identification of scolytid species was done using the keys published by Gil and Pajares (1986), Pfeffer (1995) and López et al. (2007). Some identification was confirmed by M. Faccoly (University of Padova). Examinations and pictures were carried out using a Zeiss stereomicroscope (Stereo Discovery V8) and Nikon D5000 camera. The nomenclature for this group of insects is that used in the Iberian Fauna Databank (IBERFAUNA, 2008).

<table>
<thead>
<tr>
<th>ID site</th>
<th>Location</th>
<th>Coordinates</th>
<th>Altitude</th>
<th>Arboreal layer (predominant sp.)</th>
<th>Shrub layer</th>
<th>Tree density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>La Victòria</td>
<td>31S, 515684.00mE, 4411200.00mN</td>
<td>120m</td>
<td>Pinus halepensis</td>
<td>P.le., C.m., P.h., O.e., C.h., R.o., Q.i.</td>
<td>496 stems/ha</td>
</tr>
<tr>
<td>2</td>
<td>Mondragó</td>
<td>31S, 516249.00mE, 4355109.00mN</td>
<td>23m</td>
<td>Pinus halepensis</td>
<td>P.le., J.sp., O.e.</td>
<td>357 stems/ha</td>
</tr>
<tr>
<td>3</td>
<td>Albufera</td>
<td>31S, 510784.00mE, 4402510.00mN</td>
<td>19m</td>
<td>Pinus halepensis</td>
<td>P.le., E.sp., O.e.</td>
<td>714 stems/ha</td>
</tr>
<tr>
<td>4</td>
<td>Planícia</td>
<td>31S, 457221.00mE, 4390581.00mN</td>
<td>416m</td>
<td>Quercus ilex</td>
<td>P.le.</td>
<td>460 stems/ha</td>
</tr>
<tr>
<td>5</td>
<td>Tiraset</td>
<td>31S, 497016.00mE, 4393588.00mN</td>
<td>65m</td>
<td>Quercus ilex</td>
<td>P.le.</td>
<td>125 stems/ha</td>
</tr>
<tr>
<td>6</td>
<td>Coll Pelat</td>
<td>31S, 491440.00mE, 4407489.00mN</td>
<td>680m</td>
<td>Quercus ilex</td>
<td>C.m., P.la., P.h., Q.i., P.le.</td>
<td>1146.34 stems/ha</td>
</tr>
</tbody>
</table>
RESULTS

A total of four new species were recorded in the Balearic Islands: Chaetoptelius vestitus, Coccotrypes dactyliperda, Xylocleptes bispinus and Xyleborus eurygraphus.

Family Curculionidae Latreille, 1802 (Coleoptera, Polyphaga, Curculionoidea)

Subfamily Scolytinae

Tribe Dryocoetini

Coccotrypes Eichhoff, 1878

Coccotrypes dactyliperda (Fabricius, 1801)

Xylocleptes Ferrari, 1867

Xylocleptes bispinus (Duftschmid, 1825)

Tribe Hylesinini

Chaetoptelius Fuchs, 1913

Chaetoptelius vestitus (Mulsant & Rey, 1861)

Tribe Xyleborini

Xyleborus Eichhoff, 1864

Xyleborus eurygraphus (Ratzeburg, 1837)

Chaetoptelius vestitus (Mulsant & Rey, 1861)

A total of 86 specimens of Chaetoptelius vestitus (Fig. 2A) were caught during this study. The major part of captures was in pine forests (plots 1, 2 and 3), where it was collected a total of 84 specimens along the four years of the present study, with the exception of July and August. Moreover, 2 specimens were captured in the evergreen oak forest (plots 5 and 6), in October 2011 and December 2012.

General distribution: The area of distribution of C. vestitus includes Asia (Iran, Iraq, Israel, Saudi Arabia, Syria, Tajikistan, Turkey and India: Uttarackhand), Europe (Bulgaria, Croatia, France, Greece, Italy, Macedonia, Iberian Peninsula (Spain), Rusia: South European Territory and Ukraine), North Africa (Algeria, Canary Islands, Morocco and Tunisia), Neotropical and Oriental Regions. (Alonso-Zarazaga et al., 2017; Wood and Bright, 1992).

Host plant: Pistacia atlantica, P. integerrima, P. lentiscus, P. terebinthus and P. vera (Wood and Bright, 1992; Meziou-Chebouti et al., 2013). Moreover, this species is apparently rare in Cotinus coggygria, Olea europaea and Smilax aspera (Wood and Bright, 1992).

Coccotrypes dactyliperda (Fabricius, 1801)

Six specimens of C. dactyliperda (Fig. 2B) were captured in the pine forests (plots 1, 2 and 3) only in 2012 (June, August and October). No captures of C. dactyliperda were recorded in Quercus forest.
First Record of Four Scolytid Species (Coleoptera: Curculionidae)

General distribution: Asia (China, Israel, Japan, Jordan, Saudi Arabia and India Uttarackhand), Europe (France, Greece, Iceland, Italy, Malta, Montenegro, Portugal, Iberian Peninsula (Spain) and Switzerland), North Africa (Canary Islands, Egypt, Libya, Morocco and Madeira Archipelago), Afrotropical, Australian, Nearctic, Neotropical and Oriental Regions (Alonso-Zarazaga et al., 2017; Wood and Bright, 1992).

Host plant: Seeds of Areca catechu, Cargotus urenus, Chamaedorea spp., Chamaerops spp., Cinnamomum zeylanicum, Cocos spp., Coccothrinax sp., Dictyosperma album, Elaeis guineensis, Elaeocarpus oblongus, Freycinetia arborea, Hyphaena spp., Hyophorbe sp., Livingstonia spp., Olea europaea, Oreodoxa spp., Persea gratissima, Phoenix spp., Phytelephas macrocarpa, Pritchardia pacifica, Ptychosperma sp., Sabal bermudana, Seaforthia sp., and Washingtonia filifera (Wood and Bright, 1992). In addition, in a study conducted in Tenerife (Siverio and Montesdeoca, 1990) has also been found C. dactyliperda, attacking seeds of Howea fosteriana.

Xylocleptes bispinus (Duftschmidt, 1825)

Five specimens of X. bispinus (Fig. 2C) have been captured in pine forests in 2012 and 2014, (four specimens in plot 3 and one in plot 1) and other one specimen in Quercus forest in 2014 (plot 5). All specimens have been collected during summer (from July to September).

General distribution: According to Wood and Bright (1992) and Alonso-Zarazaga et al. (2017) the area of distribution of X. bispinus includes Asia (Turkey), Europe (Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, France, Great Britain, Germany, Greece, Hungary, Italy, Macedonia, Montenegro, The Netherlands, Poland, Romania, Serbia, Slovakia, Slovenia, Iberian Peninsula (Spain), Russia: South European Territory, Switzerland and Uckaine) and North Africa (Algeria, Egypt, Libya, Morocco and Tunisia). Host plant: Clematis species and Vitis sylvestris (Wood and Bright, 1992; Gourlay et al., 2000).

Xyleborus eurygraphus (Ratzeburg, 1837)

Two specimens of X. eurygraphus (Fig. 2D) has been collected, one in pine forest (plot 3) and other one in oak forest (plot 6), during May and August of 2012.

General distribution: This species distributes across Asia (Iran and Turkey), Europe (Austria, Bosnia-Herzegovina, Bulgaria, Croatia, Russia: Central European Territory, Czech Republic, France, Germany, Greece, Hungary, Italy, Luxembourg, Macedonia, Moldavia, The Netherlands, Poland, Portugal, Slovakia, Iberian Peninsula (Spain), Russia: South European Territory, Switzerland, Ukraine and Serbia and Montenegro) and North Africa (Algeria, Egypt, Libya, Morocco and Tunisia) (Alonso-Zarazaga et al., 2017; Wood and Bright, 1992).

Host plant: Pinus species like P. sylvestris, P. nigra, P. maritima, P. halepensis, P. pinaster and P. radiata, Quercus spp. (Q. suber in Galicia) and Ulmus spp. (Wood and Bright, 1992; Lombardero, 1994).
DISCUSSION

This is the first report of *C. vestitus*, *C. dactyliperda*, *X. bispinus* and *X. eurygraphus* in the Balearic Islands (Western Mediterranean). This discovery improved the knowledge of the composition of bark beetles fauna of the Balearic forests in Western Mediterranean. In addition, it is important to note that two of these new species, *Chaetoptelius vestitus* and *Coccotrypes dactyliperda*, appear as species of interest in some Mediterranean areas. Concretely, *C. vestitus* was the most abundant species captured in forests during the four years of study, with a total of 86 specimens. On the other hand, *C. dactyliperda* had shown lower population density in pine forests (with a total of 6 specimens), during the years 2011 to 2015. But, a proliferation of these insects could imply a major ecological damage to habitat (Mehrnejad, 2001; Braham and Jardak, 2012; Blumberg and Kehat, 1982), so it is important maintain a consistent population studies in order to detect a possible peak of these species, especially under conditions of drought and post-fire.

The most abundant specie was *C. vestitus*, which is a very harmful species to the cultures of pistachio orchards, and it is considered as a key pest of pistachio in Tunisian, Algerian, Iranian, Iraqi and Turkish regions, where *C. vestitus* are infesting twigs and are inducing important damages (Mehrnejad, 2001; Chebouti-Meziou *et al.* 2011; Samin *et al.* 2011; Braham and Jardak, 2012; Meziou-Chebouti *et al.* 2013). The host species of *C. vestitus* in the Balearic Islands are: *Pistacia terebinthus*, *Pistacia lentiscus*, *Olea europaea* var. *sylvestris* and *Smilax aspera* (Herbari Virtual...
del Mediterrani Occidental, 2007). Even though the genus *Pistacia* includes a large number of species, *Pistacia vera* is the only one that produces edible fruits and *C. vestitus* has an economic importance due to the fall of the fruit and the decrease in yield of this type of pistachio orchards. It is important to note that in the Balearic Islands are wild pistachios, in particular *Pistacia terebinthus* and *Pistacia lentiscus* (Chebouti-Meziou *et al*., 2011; Meziou-Chebouti *et al*., 2013; Herbari Virtual del Mediterrani Occidental, 2007). On one hand *Pistacia lentiscus* is very abundant in forestry superficies because it is the main species of the shrub layer in pine forests (98.63% probability of presence) and evergreen oak forests (71.05% probability of presence) in Majorca (CAIB, 2012). On the other hand, *Pistacia terebinthus* is not an abundant species in Majorca that is listed as endangered by the IUCN which lives in the rocky walls of the Serra de Tramuntana, World Heritage by UNESCO (Herbari Virtual del Mediterrani Occidental, 2007). This species of scolytid can also cause damage to *Olea europaea* var. *sylvestris* and *Smilax aspera*, other abundant plant species in Majorca.

The abundance of the other three species described for first time in this study was very low. According to Bright and Peck (1998) *C. dactyliperda* attack most frequently in seeds of various palms, but the seeds and nuts of a large number of tropical trees are also attacked. Furthermore, according to Wood and Bright (1992) *C. dactyliperda* is polyphagous species. In Majorca and the Balearic Islands we can find the following species of palms: *Chamaerops humilis*, *Phoenix canariensis*, *Phoenix dactylifera*, *Washingtonia filifera* and *Olea europaea* var. *sylvestris* (Herbari Virtual del Mediterrani Occidental, 2007). *C. dactyliperda* is considered a primary pests of green unripe dates (Blumberg and Kehat, 1982) causing the fruit drop that resulted in economic losses for those countries with date production (Kehat *et al*., 1976). In a study in the palm fields of Elche (Spain) fruit drop due to *Coccotrypes dactyliperda* activity was result in a 52.71% yield loss (Gómez, 2004), while the yield losses in Israel resulted in a 30-40% (Kheat *et al*., 1976) and in Egypt the yield losses resulted in a 12.5-33.8% (Monir *et al*., 1998). In Majorca there are no palm trees cultured with commercial purposes, but we can find species of *Phoenix canariensis*, *Phoenix dactylifera* and *Washingtonia filifera* cultivated as ornamentals (Herbari Virtual del Mediterrani Occidental, 2007). The only species of native palm in this region is *Chamaerops humilis*. *C. humilis* is a species with special protection by the Balearic Catalogue of Endangered Species and Special Protection (BOIB, 2005). The presence of *C. dactyliperda* is important because it is associated with *C. humilis* (Ponel and Lemaire, 2012) and it could extend this bark beetle by selling nursery material affected, causing significant damage to *Chamaerops humilis*. *C. dactyliperda* is an invasive seed predator for *C. humilis* (Kirkendall and Faccoli, 2010, Sauvard *et al*., 2010). The impact of this seed predation on native populations of *C. humilis* is not very clear and varies across geographic location, habitat degradation and fleshy pulp amount (Rodríguez *et al*., 2014). Thus, a negative correlation between seed predated rate and persisting fruit pulp has been shown, explained by the secondary compounds present in the pulp are capable of deter the *C. dactyliperda* attacks. Therefore, activity of species that feeding seed
pulp, as rabbits or rodents could increases the seed predation rate by *C. dactiliperda* (Rodríguez *et al.*, 2014). On the other hand, this species of bark beetle can attack other vegetal specie present in Majorca and the Balearic Islands: *Olea europaea* var. *sylvestris* (Herbari Virtual del Mediterrani Occidental, 2007).

According to Gourlay *et al.* (2000), *Xylocleptes bispinus* is the most damaging agent for old man’s beard (*Clematis* spp.) which attacks young woody stems and is capable to kill a significant part of the plant, but it is not considered a primary pest. The hosts species of *X. bispinus* which are presents in the Balearic Islands are: *Clematis vitalba*, *C. cirrhosa* and *C. flammula*.

Xyleborus eurygraphus is the new reported specie for the Balearic archipelago in this study that was captured in less number (two specimens), and only attack trees that are already weakened. The host species of *X. eurygraphus* which are presents in the Balearic Islands are: *Pinus halepensis*, *P. canariensis*, *P. nigra*, *P. pinaster*, *P. pinea*, *Quercus ilex*, *Q. cerrioides*, *Q. coccifera*, *Q. suber*, *Q. humilis*, *Ulmus minor*, *U. glabra* and *U. pumila* (Herbari Virtual del Mediterrani Occidental, 2007).

This work has allowed to know new species had not detected in the Balearic archipelago as yet, so new ways to tracing and manage are opened. Two of this four new species reported are primary pests and in some cases they attack emblematic species of the Mediterranean area, so it is important to monitor and control their population levels to prevent explosions and pests.

ACKNOWLEDGEMENTS

Special thanks to Massimo Faccoli, from University of Padova (Italy), for confirm the identification of some specimens. We thank Agentes de Medio Ambiente and Operarios de sanidad forestal del IBANAT for their assistance with the field sampling, and the participating farmers for access to the study sites and their assistance.

REFERENCES

First Record of Four Scolytid Species (Coleoptera: Curculionidae)

Meziou-Chebouti, N., Merabet, A., Chebouti, Y., Bissaad, F.Z. and Behidj, N., 2013. Cycle of *Chaetoptelius vestitus* on pistachio fruit (*Pistacia will vera* L.) and counting galleries at four cardinal exposure in Algeria. 2013 International Conference on Sustainable Enviromental Agriculture IPCBEE, 57(23): 119-123.

Received: March 17, 2017 Accepted: June 26, 2018